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Abstract

This is the final project of Group 7 for EECS 504: Com-
puter Vision. The goal of our work is to re-implement a
paper from 2019 called ‘SinGAN’, which generates uncon-
ditional realistic images from a single natural input image
with akin quality to state-of-the art Generative Adversarial
Networks (GANs) trained on complete classes of datasets.
SinGAN uses a pyramid architecture to allow global struc-
ture to be maintained while fine textures are also curated.
Additionally, SinGAN injects noise at each level of the
multi-level generator pyramid, allowing diverse samples to
be created. For this project we implemented the image ma-
nipulation tasks of harmonization and editing.

1. Introduction

The goal of this project is to re-implement SinGAN [3]
and generate unconditional realistic images, based on a sin-
gle input image while maintaining a similar quality to state-
of-the-art GANs trained on datasets, as seen in Fig. 1.

SinGAN is an unconditional generative model which can
be learned from a single natural image. It is able to deal with
general images without the need of a database of images
from the same class. It is shown that the internal statistics
of patches within a single natural image carry enough in-
formation to train a powerful generative model. Compared
with previous single image GAN schemes, SinGAN is not
limited to texture images, and is not conditional (i.e. it gen-
erates samples from noise). It can be applied to many image
processing tasks, including paint-to-image, editing, harmo-
nization, super-resolution and animation from a single im-
age. Additionally, SinGAN’s architecture is resolution ag-
nostic and can thus be used on high resolution images.

GANs demonstrate the ability to generate objects and
scenes. GANs are especially useful in tasks like super reso-
lution, photo blending, photo editing, text-to-image transla-
tion or generating examples for image dataset types of ap-

plications, in addition to many more.
We investigated a few architectural contributions. We

implemented simplicity where possible, especially since we
never implemented all applications from the original pa-
per. For example, many of the resizing functions used by
the original paper manipulated multiple aspects of the ten-
sor, whereas we simply implemented up or down scaling as
necessary. We also adjusted the number of convolutional
blocks within GAN at a single scale of the network and
investigated its impact on the generated random samples.
We qualitatively compared our results with the results from
the original paper to understand the effectiveness our re-
implementation. And we also applied SinGAN on images
different than the original paper to evaluate its generality.

2. Related Work

This project is modeled after SinGAN [6], which differ-
entiates from other related works because of it’s training be-
ing task (ex: super-resolution) agnostic and on a single natu-
ral image. The authors of SinGAN were inspired by Socher
et al [1] to use only a single image to train the GAN; how-
ever, different patch sizes at different scales of the network
pyramid are used to collect information on both the global
and fine-detailed features from the training image. Many
other recent works have developed specific image manip-
ulation tasks from training on a class of images. SinGAN
combines these aspects while also being an unconditional
GAN; unconditional GANs need no class labels for gen-
erative modeling, whereas conditional-GANs require class
labels for the generator and discriminator modeling. Sin-
GAN expands use of unconditional GANs outside of tex-
ture images with non-repetitive global structures, as previ-
ous works [8] have accomplished. SinGAN injects noise
at each scale to be purely generative and to have capability
beyond texture synthesis.

A GAN’s generative model quality depends on the abil-
ity of its paired discriminative model. If the images are not
discerned, then the generator will only train to a certain po-
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Figure 1. Generated Random Sampling of Arbitrary Size.

tential. The more realistic the generated images become,
the more difficult it is for the discriminator to classify the
images as fake. GANs calculate loss to comprehend these
decisions during training.

Other types of generative models include ’Fully Visi-
ble Belief Networks’ [9] (apply chain rule of probability
to decompose the image, very slow and cannot run in par-
allel), ’Non-linear ICA’ (convert Gaussian distributions to
another space, needs invertible transformation function),
’Variational Autoencoder’ [4] (marginalize image’s density
function, low quality images), and ’Boltzmann Machines’
(define an energy function, convert to probability distribu-
tion to determine state of an image, poor performance on
high dimensional images) [7]. The advantage of GANs over
these other typologies is that it produces more realistic and
higher quality results.

3. Method

3.1. Multi-level architecture

SinGAN is architected using a multi-level pipeline (Fig.
2). Each of the N levels of the pyramid consists of a GAN.
The network accommodates N levels, and the number of
levels used for each image is calculated based on the image
size to keep training resources optimized. Each level of the
pyramid evaluates patches from the input image in a coarse-
to-fine fashion. In this project, we always resize the training
image to maximal dimension 250px while maintaining its
aspect ratio. Normalization is also performed on the input
image to provide more effective training because the input
image will then be on the same scale and intensity value as
the injected noise. During training, the SinGAN model con-
sists of a Multi-level Patch Generator and Multi-level Patch
Discriminator [3]. The number of levels in the pyramid is
determined by the size of the input image. The output from
each pyramid level is the input to the next level; except the
initial input to the generator pyramid (at the coarsest level)
is a random noise image. We use the same randomized seed
for generation of noise for all the levels. The scaling fac-
tor for the pyramid is re-evaluated after resizing the input

image to match the maximal dimension requirements. All
the generators and discriminators have similar architecture
as shown in Fig. 3. At each layer of the network, the output
from the previous level is added to another patch of noise
and the result is pushed through a sequence of convolutional
blocks of the form Conv(3 × 3)-BatchNorm-LeakyReLU
and subsequently up-scaled. At the coarsest level, the num-
ber of kernels is 32 and we double the number of kernels
every 4 levels as in the original implementation. The recep-
tive field is set at the coarsest layer and remains constant
(11 × 11) for every layer. Since the dimension of the im-
age in each level layer is different, a fixed receptive field
means a varying effective patch size as shown by the yellow
block in Fig. 2. This above procedure is how the network
is formed and trained from coarsest layer (bottom) to finest
layer (top).

Figure 2. Architecture of the SinGAN network

The Discriminator evaluates adversarial and reconstruc-
tion losses. Adversarial training is used to achieve a re-
alistic output at each level; the original authors executed
this through WGAN-GP loss [2]. In practice, WGAN with
gradient penalty enhances training stability by providing
smoother gradients. The adversarial loss is defined over the
whole image as opposed to over random patches to allow
the network to learn boundary conditions. Reconstruction
loss is calculated to ensure the reconstructed image holisti-
cally represents the input image by using root mean squared
error (RMSE).

SinGAN is trained on all the overlapping patches at mul-



Figure 3. Single scale generation in level of SinGAN network

tiple scales of a single natural image. Because the network
has a limited receptive field, it can generate new combina-
tions of patches that do not exist in the training image.

3.2. Loss function

The training loss for GAN in each layer of pyramid con-
tains two parts: adversarial loss and reconstruction loss.

min
Gn

max
Dn

Ladv(Gn, Dn) + αLrec(Gn). (1)

Adversarial loss In each layer of the pyramid, there
is a generator Gn coupled with a Markovian discriminator
Dn. They play a similar role as in traditional GAN: Gn is
trained to maximize Dn(Gn(z)), which is to generate fake
image as real as possible to fool the discriminator; Dn is
trained to maximize Dn(x) and minimize Dn(Gn(z)) so
it has the ability to discriminate the real image from fakes.
WGAN-GP loss [2] is added to the adversarial loss to help
stabilize the training process.

Reconstruction loss During the training process, we
make sure that the generator can generate the original image
x from a specific set of input noise map. Just like the orig-
inal paper, we choose zrecN , zrecN−1, ..., z

rec
0 = z∗, 0, ..., 0,

where z∗ is a fixed noise map (drawn once and kept fixed
during training).

Lrec = ||Gn(0, (x̃
rec
n+1) ↑r)− xn||2. (2)

Here, x̃recn is the generated image at the nth level when
using the specific noise map. For n = N , Lrec =
||Gn(z

∗, 0)− xN ||2.
The reconstructed image x̃recn is used to determine the

standard deviation σn of the input noise zn for the next
level. Specifically, σn is the root mean squared error
(RMSE) between x̃recn+1 and xn, and is a measure of how
much details need to be added at that level.

4. Experiments
SinGAN applications that were implemented in this

work include random samples, random samples at arbitrary
dimensions, harmonization, and editing. The effect of the
injection scale for image manipulation refers to the process
of injecting a down sampled version of an image into the
generation pyramid at some scale n<N. Depending on the

(a) Training Image

(b) Level n=8 (c) Level n=7 (d) Level n=6

(e) Level n=5 (f) Level n=4 (g) Level n=3

(h) Level n=2 (i) Level n=1 (j) Level n=0

Figure 4. Training loss for Generator (orange) and Discriminator
(blue) for each level. n=0 indicates the top level, which is the finest
layer. We trained from n=8 to n=0.

pyramid level selected, images will have different lower and
higher resolution traits. The coarser the scale that the image
is injected into, the more modifications to the larger struc-
tures; at finer injection scales, the fine textures are modified
while global structures are maintained. This process is used
for harmonization and editing applications. Setting the in-
jection scale was a parameter used in experimentation.

Qualitatively, we compare the results of our SinGAN
with the results from the original paper. In addition to
the training images used by Shaham et al., we train our
network on random images from Berkeley Segmentation
Database(BSDS500) dataset [5]. We also analyze how the
depth of the pyramid in SinGAN affects the generated im-
age and whether introducing image at certain depth affects
the preservation of relevant structures in the generated im-
ages or not.

4.1. Random Sampling

Random sampling is a major function of SinGAN, which
is to generate fake images that are hard to distinguish from
the real one, and it can also be used as a way to evaluate how
the network is trained. If the model is trained successfully,
it should be able to generate random samples that have the
similar texture as the training sample, while many details



can be different. We evaluated our model both qualitatively
and quantitatively.

4.1.1 Qualitative Evaluation

Fig. 5 shows some of our generated random samples from
our model. Because our network is fully convolutional, we
are able to generate outputs of arbitrary size at test time by
just changing the dimensions of the noise maps. Therefore,
besides generating random samples with the same aspect
ratio as the training image, we also generate outputs with
scaled dimensions. After testing on lots of different images,
we notice that SinGAN performs better on images that are
more important as a whole, such as landscapes etc. How-
ever, if an image is detail oriented, it is more likely that the
output fails to be that realistic, as shown in Fig 6. Our net-
work is able to produce new structures while still maintain-
ing the visual content of the original image. Interestingly,
our model was not only able to preserve reflections but also
synthesize it as can be seen in the case of mountains and
colosseum in Fig. 5.

We also tested to see the effect of the number of convo-
lutional blocks within the GAN at a single level of the net-
work. When we set the number to 8, random generated sam-
ples are as shown in Fig. 7. They are almost the same as the
original image except some imperceptible details like parts
of the mountain or the clouds. We assume that it is probably
because the network is over-fitting the training image with
8 convolutional blocks and hence it cannot generate highly
varying configurations.

4.1.2 Quantitative Evaluation

In the quantitative evaluation, human ranking was used to
understand our results. The process of human ranking is
defined as assigning a ’real’ or ’fake’ classification to each
image by asking a participant to rank each image. For this
project, we averaged the results from each participant to re-
port the human ranking value, shown in Table 1. A total of
four participants were garnered. Although qualitative, it al-
lows for comparable metrics across different images. It was
noted that the best performing output images were gener-
ated through scaled random sampling.

4.2. Editing

Editing is to copy certain patches of the original image
and paste them in other locations. SinGAN can effectively
regenerate fine texture and seamlessly stitch those pasted
parts and create realistic images.

Take the edited tree for example (Fig. 8), we first trained
on the original image so that the network can generate its
texture patches. Then we created our mask for edited as
well as the edited input. As we can see here, the edited
input is not very smooth and we can easily figure out the

Table 1. Human Ranking Results
Image Human Ranking

(% assumed Real)
Balloons 10.4%

Colosseum 25.0%
Cows 31.3%

Flowers 20.8%
Mountains 29.2%

Mountains - Arbitrary Size 49.5%
Trees 27.1%

pasted part. We then injected the input image into a certain
scale of the pyramid (not necessarily from the bottom layer)
and fed forward along the pipeline. We combined the output
with the original image using equation 3

output = (1−mask)× x0 +mask × x̃rec0 . (3)

Here, x0 is the original image and x̃rec0 is the final generated
image of the network with edited image as the input. The
mask is a binary mask, where we set 255 on the pasted part
and 0 elsewhere.

The trickier part is that which scale layer to inject. As
Fig. 9 shows, injection scale has great impact on the final
output. We can see that as the injection scale decreases, the
outcome is more like the edited input. That is because the
effective patch size of GAN in each scale layer is different.
The less scale we injected the input, the smaller the struc-
ture gets modified. We found that setting the 2nd, 3rd or 4th
coarsest scale layer (count from bottom to top in architec-
ture, which corresponds to n=6, n=5, n=4 in this image) as
the injection layer typically generated best result.

4.3. Harmonization

Harmonization is a technique of image manipulation that
explicitly matches the style of images before blending them.
Using a multi-level technique allows us to transfer the ap-
pearance of one image to another. To achieve this tech-
nique, we train SinGAN on a background image, then in-
put an image with newly added content to be realistically
blended with the style of the background. We also input a
binary mask that outlines the newly added content of the in-
put image. Similarly to editing, we investigated the effect of
the input image’s injection scale. If the original SinGAN’s
results (Fig.11) are compared to our re-implementation of
SinGAN (Fig.12), we observe very similar quality at each
scale. The best results are achieved at scales 2, 3, or 4 be-
cause the newly added content maintains its structure while
it is converted to the background’s style.

We evaluated a second image, ’Seaside’, on our re-
implementation of SinGAN (Fig.13). This image was



Figure 5. Random Sampling. The left column is the original image which is used to train the network. The right column contains random
samples the well-trained network can generate. We can even generate images that are in different size as the original one since the model
is fully convolutional. As we can see, in the generated samples, same patch distributions are maintained while new structures and object
configurations are depicted.

smaller and thus trained on less levels in the pyramid. We
qualitatively observed that the less scales trained in an im-
age, the sharper effect of harmonization on the output. At

(a) Training Image (b) Good Result (c) Bad Result

Figure 6. For images that require details, the failure rate of Sin-
GAN output can increase. For example, balloon needs perfect
contour so that generated fake (c) is not easily distinguishable from
the real image. Still, we can generate large amount of outputs and
we can hopefully find some realistic generated samples like (b).

(a) Original Image

(b) Random Samples

Figure 7. Generated random samples by the model containing 8
convolutional blocks each Generator and Discriminator. The ran-
dom samples are almost same as the training image.

(a) Original Image (b) mask for edited part

(c) Edited Input (d) SinGAN output

Figure 8. Editing. From the original image (a), we used a binary
mask (b) to copy and paste a patch and create an edited input(c).
We injected the downsampled version of this edited input into an
intermediate layer of the network (trained on (a)). The final output
generated from equation 3 can be like (d), which is very smooth
and realistic.

Figure 9. Effect of the injection scale on Editing.

desired scales, SinGAN does not overly-blend the new con-



Figure 10. Some sample outputs for Editing generated by our
model.

Figure 11. SinGAN’s original harmonization of ’Starry Night’
with various injection levels

Figure 12. Our harmonization of ’Starry Night’ with various injec-
tion levels

tent of the input image. We see the output image contains
contrast, texture, noise, and blur to reconstruct the output
image.

Figure 13. Our harmonization of ’Seaside’ with various injection
levels

5. Conclusions
SinGAN is a powerful tool. It only trains from patches

within a single natural image, meaning that less time is
needed for training over a network that uses a class of im-
ages. Because noise is injected during generation and the
results are purely generative, SinGAN is also able to per-
form multiple image manipulation tasks. For this project,
we successfully re-implemented SinGAN to generate dis-
tinct realistic samples. We used SinGAN to perform har-
monization and image editing tasks. From investigating the
injection scale level on the manipulation, we discovered that
a few levels of random noise before injection help the im-
age look more realistic. These factors create GANs that are
more robust, realistic and practical.
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